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A study is made of one possible mechanism explaining the phenomenon of bilateral filling of dead-end conic
capillaries submerged in a liquid: diffusion and recondensation of a liquid vapor from a meniscus with a
small curvature to a meniscus with a larger curvature. A theory of this process has been constructed and the
rate of growth of the near-vertex liquid column has been calculated based on this theory. A comparison with
experiment shows that although the law of growth of the column predicted by the theory coincides with the
experimental one, the numerical values of the rate are nearly two orders of magnitude lower. Conditions
under which one can detect this mechanism experimentally are discussed.

Introduction. An extensive amount of experimental material on the results of research into the phenomenon
of bilateral filling of dead-end conic capillaries with liquid has been obtained at present (this phenomenon was dis-
closed in [1] for the first time). The kinetic regularities of the process have been established; it has been shown that
in some cases we have filling of the capillary channel predominantly on the source side of the vertex of a cone having
no direct contact with the liquid around the capillary [2–4].

It is clear that the appearance and growth of a liquid column in the dead-end point of the cone can be caused
by two physical mechanisms. The first of them is evaporation of the liquid from a meniscus of smaller curvature and
condensation of its vapor on a meniscus of larger curvature, which are caused by the difference in the pressures of a
saturated vapor above the two menisci. The second mechanism is based on the presence of film liquid flow toward the
vertex of the cone under the action of the pressure gradient caused by the decrease in the pressure in it with increase
in the curvature of the meniscus.

In [4–5], conclusions on the prevailing role of the processes of evaporation and condensation in the phenome-
non of bilateral filling of conic capillaries with liquids are drawn based on the available experimental data. The first
of the above mechanisms is investigated below theoretically. Consideration is given to mass transfer due to both the
diffusion of the vapor in a compressed vapor-air mixture and the diffusion of a gas dissolved in the liquid at the out-
let from the capillary, i.e., the process determining diffusion impregnation.

The geometry of the problem with the corresponding notation is presented in Fig. 1. We will consider a
spherical coordinate system whose origin coincides with the vertex of a conic capillary.

Formulation of the Problem in a General Statement. Consideration is given to two interrelated processes:
diffusion of air (gas) from the gas cavity of the capillary through a liquid column in the channel (the concentration of
the dissolved air at the outlet from the capillary is assumed to be equilibrium) and diffusion of a liquid vapor through
the gas cavity due to dissimilar curvatures of the menisci at the gas–liquid boundaries. The problems of diffusion are
formulated in a one-dimensional isothermal statement.

The one-dimensional equations of diffusion in a moving medium for the gas dissolved in the liquid and for
the vapor in the gas cavity in the above spherical coordinate system are written in standard form:
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The meaning of the variables in (1) and (2) is clear from Fig. 1.
The coordinates of the menisci R1 and R2 depend only on time. In what follows, we agree to denote the time

derivatives for variables dependent only on time by points above symbols unlike functions of both the time and the
coordinates for which the corresponding derivatives are denoted in the ordinary manner (see (1) and (2)).

System (1) and (2) must be supplemented with a set of the corresponding initial and boundary conditions. The
initial conditions have the form

t = 0 :   
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ps µf
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 ,   r 2 [R1 (0), R2 (0)] .

The initial coordinate of the inlet meniscus is computed from the known expression [5]
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where

m = 
pc

pa + pv0
 ,   pc = 

2σ cos θ
Rcτ

 ,   τ = tan α .

The boundary conditions for the vapor phase are determined on the basis of the well-known formula of Kel-
vin and Thompson for the pressure of a saturated vapor prc

 above a curved surface with a radius of curvature rc:

prc
 = ps exp 




− 
ρs

ps
 
pc

ρf
 
Rc

rc




 . (3)

Introducing the notation γ = 
ρs

ρf
 
pc

ps
, using (3) and the equation of state of the vapor we write the boundary

conditions at the boundaries of the gas cavity:

r = R1 (t) :   cv (t, R1 (t)) = ρs exp 



− γ 

Rc

R1 (t)



 ,

Fig. 1. Scheme of bilateral filling of a conic capillary with liquid.

1413



r = R2 (t) :   cv (t, R2 (t)) = ρs exp 



− γ 

Rc

R2 (t)



 .

For the equation of diffusion of the gas in the liquid column bounded by the meniscus R2(t) we have the following
boundary conditions with allowance for Henry’s law:

r = R2 (t) :   cg (t, R2 (t)) = kH 



pa + pc 

Rc

R2 (t) τ
 + pv0 − ps




 ,

r = Rc :   cg (t, Rc) = kHpa .

We use a continuity equation to calculate the velocity field. In view of the incompressibility of the liquid in
the inlet column, it has the form

1

r
 
∂ (rvf)
∂r

 = 0 .

Whence

vf (t, r) = 
c (t)

r
 . (4)

From the condition on the external meniscus we have
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 . (5)

Substituting (4) into (5), we find the integration constant C:
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Then, in accordance with (4), the velocity field of the liquid is expressed as
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R2 (t)

r
 



R
.

2 (t) − 
Dv

ρf
 
∂cv (t, R2 (t))

∂r
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Let us turn to the continuity equation for the gas (air) closed in the cavity of the capillary. Since the capillary
pressure above the external meniscus can substantially change as the capillary is filled, we must take into account the
compressibility of the gas. Also, we allow for the fact that the relative change in the partial pressure of the vapor
along the gas cavity is low (γ D 10−5); the partial pressure of the vapor itself is much lower than the pressure of the
gas (pv

 ⁄ pg D 10−1–10−2). And since the total pressure along the gas cavity is constant, with an accuracy no worse than
hundredths of a percent, we can consider the pressure and hence the density of the gas in the cavity to be homogene-
ous, i.e., ∂ρg

 ⁄ ∂r = 0. With allowance for what has been said above, the continuity equation for the closed gas takes
the form

ρ
.
g + ρg 

1

r
 
∂ (rvg)
∂r

 = 0 ,

where ρg is a function of only the time. Integrating this equation, we obtain
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By analogy with (5), on the external meniscus we have the condition
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Substituting (7) into (8), we find the integration constant:
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With account for (9), expression (7) for the velocity distribution of the gas in the cavity takes the following
form:
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The rate of growth of the liquid column at the vertex of the capillary is determined by the diffusion vapor
flow to it:

ρfR
.

1 (t) = Dv 
∂cv (t, R1 (t))

∂r
 . (11)

For the density of the gas closed in the cavity of the capillary, from the equation of state of the gas we have

ρg (t) = ρg0 



1 + m 
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 . (12)

The change in the sum of the masses of the gas closed in the cavity and of the gas dissolved in the internal
liquid column is due to its diffusion flow through the boundary of the external meniscus of the gas cavity:
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Substituting ρg from (12) into this equation and computing the time derivative, upon simple transformations we obtain
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3
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 , (13)

where β = kHpa
 ⁄ ρg0.

Substitution of R
.

1(t) from (11) into (13) yields the equation for the motion of the meniscus R2(t):
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With account for (14) we can rewrite expressions (6) and (10) for vg(t, r) and vf(t, r) in the form
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Summing up what has been said above, we formulate the problem in a general statement in the form of the
system of equations consisting of (1) and (2) to which we add the following equations:
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where vf(t, r) and vg(t, r) are determined by relations (15) and (16).
The initial conditions have the form
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t = 0 :   

















cg (0, r) = kH 
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Rc

R2 (0)



 ,   r 2 [R2 (0), Rc] ;

cv (0, r) = ρs ,   r 2 [R1 (0), R2 (0)] ;

R1 (0) = δ ;
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(19)

The boundary conditions are written as follows:
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(21)

R = Rc :   cg (t, Rc) = kHpa . (22)

Simplification of the Model. In the complete formulation, the problem in question contains two small pa-
rameters: β D 102 and γ D 10−4–10−5; therefore, we can simplify it, having set β = 0 and having linearized the expo-
nents in boundary conditions (20) and (21)*. Furthermore, we reduce the problem to dimensionless form by employing
the dimensionless variables
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* We cannot set γ = 0, since in this case the mechanism of recondensation in question drops out.
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The initial conditions have the form

                                                                   t = 0 :   



















c~g (0, r~) = 1 + 
pc

paR
~

0

 ,   r~ 2 [R
~

0, 1] ;

c~v (0, r~) = 1 ,   r~ 2 [δ
~
, R

~
0] ;

R
~

1 (0) = δ
~
 ;

R
~

2 (0) = R
~

0 ;

                                                            

(24)

(25)

(26)

(27)

here δ
~
 = δ ⁄ Rc.

Boundary conditions (20)–(22) in a form dimensionless and linearized in γ will be written as
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r~ = R
~

1 (t~) :   c~v (t~, R~1 (t~)) = 1 − 
γ

R
~

1 (t~)
 , (28)

r~ = R
~
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c~v (t~, R~1 (t~)) = 1 − 
γ

R
~

2 (t~)
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c~g (t~, R~2 (t~)) = 1 + 
m

R
~

2 (t~)
 + χv + χs ,

(29)

r~ = 1 :   c~g (t~, 1) = 1 , (30)

where χv = pv0
 ⁄ pa and χs = ps0

 ⁄ pa.
In view of the smallness of the parameter χD (χD D 10−2), we can disregard the left-hand side in the second

equation of (23) and solve it as the stationary one, considering the time as the parameter. The general solution of such
an equation has the form

c~v (t~, r~) = − 
C1
∗
 (t~)

r~
 + C2

∗
 (t~) . (31)

From boundary conditions (28) and (29) it follows that

− 
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R
~
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∗
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γ

R
~

2 (t~)
 .

Whence

C1
∗
 = γ ,   C2

∗
 = 1 , (32)

and consequently from (31) and (32) we obtain

c~v (t~, r~) = − 
γ

r~
 + 1 ,

whence

R
~
.

1 (t) = 
χf

χD

 
γ

R
~

1
2
 (t)

 . (33)

Setting δ = 0 for the sake of simplicity, we write the solution of (33) with account for initial condition (26):

R
~

1 (t~) = 

3√3 
χf

χD
 γt~  .

In dimensional form, it takes the form

R1 (t) = 

3√ 6Dv σ cos θ

psτ
 




ρs

ρf





2

 t  = 

3√6Dv σ cos θµf ρs

τRgTρf
2  t  . (34)

1419



where the left expression has been obtained with the use of the equation of state of the vapor.
Comparison with Experiment. Expression (34) reveals two features that are in qualitative agreement with the

properties of the process of filling of conic capillaries observed experimentally. This is, first, the fact that the volume
of the liquid in the dead end of the capillary is in proportion to the time (i.e., R1

3 D t) or, in other words, the volu-
metric flow rate of the liquid refilling its column at the vertex of the capillary is constant with time. We can express
this flow rate as follows:

Q = 
dV
dt

 = 
d

dt
 




π (R1τ)
2
 R1

3




 = 

d

dt
 




πτ2

3
 R1

3



 = 

2πτDv σ cos θµf ρs

ρfRgT
 . (35)

As we see, the time drops out of this formula and the flow rate remains constant with time.
The other feature is the proportionality of this flow rate to the angle of opening (vertex angle) of the capil-

lary, which is directly exemplified by (35). Such a dependence has been confirmed by experiment.
Nonetheless, there is a significant quantitative difference of the mass flow rates predicted by diffusion-conden-

sation theory from the flow rates observed in experiments.
To compare experimental data for different angles of opening of capillaries it is convenient to calculate the

following quantity:

qτ = 
Q

τ
 = 
π
3

 
τR1

3

t
 = π 

2Dv σ cos θµf ρs

RTρf
 .

(36)

When the values of the parameters involved in this formula are Dv = 2⋅104 m2/sec, µf = 18, σ = 0.07 N/m,
cos θ = 1, ρs = 0.026 kg/m3, T = 295 K, and ρf = 1000 kg/m3, we obtain qτ = 0.84 µm3/sec for water.

From the data of the experiments conducted in filling different dead-end conic capillaries with water, the pa-
rameter qτ was calculated on the basis of the expression after the second sign of equality in (36). The geometric pa-
rameters of the capillaries and the corresponding values of the parameter qτ are given in Table 1.

As we see, qτ = 0.84 µm3/sec differs by more than two orders of magnitude from the experimental values.
Consequently, the diffusion flow of the liquid vapor is obviously inadequate to explain the experimentally observed
rates of filling of the conic capillaries on the source side of the dead end. This means that it is necessary to search
for another mechanism explaining this phenomenon, for example, the film one that has been dealt with earlier. We
mention in passing that, although in actual practice the diffusion vapor flow does occur and makes its contribution to
the rate of filling of capillaries, nonetheless in considering other mechanisms of this phenomenon we can disregard it
since, as has been shown above, its contribution is less than one percent of the flow observed in actual practice. How-
ever, the experimental data of [5] demonstrate that for certain (nonpolar) liquids no bilateral filling of conic capillaries
is observed. To be more precise, we are dealing with the fact that the rate of growth of the inlet column of the liquid
due to the dissolution of the gas closed in the capillaries is much higher than the rate of growth of the column at the
vertex of the capillary. Apparently, the alternative mechanism of bilateral filling does not work for such liquids. None-
theless, the above mechanism of recondensation must occur here and can be detected experimentally if we ensure the
conditions either inhibiting the growth of the inlet column of the liquid (for example, a poorly soluble gas in the se-
lected pair gas–liquid) or intensifying the process of recondensation (for example, a highly volatile liquid or increased
temperature under experimental conditions). In some of such cases it will be required that the complete system (23) be
solved.

TABLE 1. Values of the Parameter qτ for Capillaries of Different Geometry

qτ, µm3/sec 123 175 155 173

Rc, µm 760 310 805 800

R0 = τRc, µm 14 14.6 14 14.5
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NOTATION

t, time; cg and Dg, concentration and diffusion coefficient of the gas dissolved in the liquid; cv and Dv, con-
centration and diffusion coefficient of the liquid vapor in the gas cavity; vf, velocity of the liquid in the column on
the source side of the capillary mouth; vg, velocity of the gas in the gas cavity; r, coordinate (spherical system); R1
and R2, coordinates of the menisci; pa, dry atmospheric pressure; kH, Henry constant; ρs and ps, density and pressure
of the saturated vapor, respectively, at a given temperature; µf, molecular weight of the liquid; Rg, universal gas con-
stant; T, temperature; R1(0) = δ, quantity corresponding to the radius of the meniscus formed before the capillary is
submerged in the liquid due to capillary condensation; R2(0) = R0, initial coordinate of the inlet meniscus; θ, wetting
angle; pv0, partial pressure of the liquid vapor in the ambient medium; σ, coefficient of surface tension of the liquid;
α and τ = tan α, angle of opening of the capillary and its tangent; prc

, pressure of the saturated vapor above the
curved surface; ρ, density; p, pressure; C1(t), c(t), C1

∗ , and C2
∗ , integration constants; rc, radius of curvature of the sur-

face; Rc, capillary length; Q, volumetric flow rate of the liquid; qτ = Q ⁄ τ; V, volume of the liquid in the dead end of
the capillary; m, β, γ, χg, χf, and χD, dimensionless parameters. Subscripts: g, gas; v, vapor; f, liquid (fluid); s, satu-
rated; c, capillary; g0, gas at the initial instant of time; v0, vapor in the ambient medium; a, atmosphere.
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